Ultra-low-dose sequential computed tomography for quantitative lung aeration assessment—a translational study
نویسندگان
چکیده
BACKGROUND Quantitative lung computed tomography (CT) provides fundamental information about lung aeration in critically ill patients. We tested a scanning protocol combining reduced number of CT slices and tube current, comparing quantitative analysis and radiation exposure to conventional CT. METHODS In pigs, CT scans were performed during breath hold in a model of lung injury with three different protocols: standard spiral with 180 mAs tube current-time product (Spiral180), sequential with 20-mm distance between slices and either 180 mAs (Sequential180) or 50 mAs (Sequential50). Spiral scans of critically ill patients were collected retrospectively, and subsets of equally spaced slices were extracted. The agreement between CT protocols was assessed with Bland-Altman analysis. RESULTS In 12 pigs, there was good concordance between the sequential protocols and the spiral scan (all biases ≤1.9%, agreements ≤±6.5%). In Spiral180, Sequential180 and Sequential50, estimated dose exposure was 2.3 (2.1-2.8), 0.21 (0.19-0.26), and 0.09 (0.07-0.10) mSv, respectively (p < 0.001 compared to Spiral180); number of acquired slices was 244 (227-252), 12 (11-13) and 12 (11-13); acquisition time was 7 (6-7), 23 (21-25) and 24 (22-26) s. In 32 critically ill patients, quantitative analysis extrapolated from 1-mm slices interleaved by 20 mm had a good concordance with the analysis performed on the entire spiral scan (all biases <1%, agreements ≤2.2%). CONCLUSIONS In animal CT data, combining sequential scan and low tube current did not affect significantly the quantitative analysis, with a radiation exposure reduction of 97%, reaching a dose comparable to chest X-ray, but with longer acquisition time. In human CT data, lung aeration analysis could be extrapolated from a subset of thin equally spaced slices.
منابع مشابه
Quantitative assessment of Pulmonary Alveolar Proteinosis (PAP) with ultra-dose CT and correlation with Pulmonary Function Tests (PFTs)
BACKGROUND The purpose of this study was to investigate whether ultra-low-dose chest computed tomography (CT) can be used for visual assessment of CT features in patients with pulmonary alveolar proteinosis (PAP) and to evaluate the relationship between the quantitative analysis of the ultra-low-dose CT scans and the pulmonary function tests (PFTs). METHODS Thirty-eight patients (mean [SD] ag...
متن کاملDose Assessment in Computed Tomography Examination and Establishment of Local Diagnostic Reference Levels in Mazandaran, Iran
Background: Medical X-rays are the largest man-made source of public exposure to ionizing radiation. While the benefits of Computed Tomography (CT) are well known in accurate diagnosis, those benefits are not risk-free. CT is a device with higher patient dose in comparison with other conventional radiation procedures. Objective: This study is aimed at evaluating radiation dose to patients from ...
متن کاملOptimization of Radiation Dose in Cranial Computed Tomography among Adults: Assessment of Radiation Dose against Image Quality
Introduction: The rapid use of computed tomography (CT) scan is of great concern, due to increase in patients’ dose. Optimization of CT protocol is a vital issue in dose reduction. This study aimed to optimize radiation dose in cranial CT and assess modifications in image quality under radiation dose reduction. Material and Methods: A poly(me...
متن کاملSemiautomatic segmentation of longitudinal computed tomography images in a rat model of lung injury by surfactant depletion.
Quantitative analysis of computed tomography (CT) is essential to the study of acute lung injury. However, quantitative CT is made difficult by poor lung aeration, which complicates the critical step of image segmentation. To overcome this obstacle, this study sought to develop and validate a semiautomated, multilandmark, registration-based scheme for lung segmentation that is effective in cond...
متن کاملUltra-low dose lung CT perfusion regularized by a previous scan.
RATIONALE AND OBJECTIVES A previous scan-regularized reconstruction (PSRR) method was proposed to reduce radiation dose and applied to lung perfusion studies. Normal and ultra-low-dose lung computed tomographic perfusion studies were compared in terms of the estimation accuracy of pulmonary functional parameters. MATERIALS AND METHODS A sequence of sheep lung scans were performed in three pro...
متن کامل